
apan

PHYSICAL REVIEW D, VOLUME 61, 044012
Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general
relativity
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We perform 3D numerical simulations in full general relativity to study the stability of rapidly rotating,
supramassive neutron stars at the mass-shedding limit to dynamical collapse. We adopt an adiabatic equation
of state withG52 and focus on uniformly rotating stars. We find that the onset of dynamical instability along
mass-shedding sequences nearly coincides with the onset of secular instability. Unstable stars collapse to
rotating black holes within about one rotation period. We also study the collapse of stable stars which have
been destabilized by pressure depletion~e.g., via a phase transition! or mass accretion. In no case do we find
evidence for the formation of massive disks or any ejecta around the newly formed Kerr black holes, even
though the progenitors are rapidly rotating.

PACS number~s!: 04.25.Dm, 04.30.2w, 04.40.Dg
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I. INTRODUCTION

Neutron stars found in nature are rotating. Rotation c
support stars with higher mass than the maximum st
limit, producing ‘‘supramassive’’ stars, as defined and cal
lated by Cook, Shapiro and Teukolsky@1,2#. Such supra-
massive stars can be created when neutron stars accret
from a normal binary companion. This scenario can also l
to ‘‘recycled’’ pulsars~see@3# for model calculations in gen
eral relativity!. Alternatively, supramassive stars can be p
duced in the merger of binary neutron stars~@4# for discus-
sions and references!.

Pulsars are believed to be uniformly rotating. Eventua
viscosity will drive any equilibrium star to uniform rotation
Uniformly rotating configurations with sufficient angula
momentum will be driven to the mass-shedding limit~at
which the star’s equator rotates with the Kepler frequency
that any further spin-up would disrupt the star@3#!. Supra-
massive neutron stars at the mass-shedding limit are the
ject of this paper.

The dynamical stability of rotating neutron stars, inclu
ing supramassive configurations, against radial perturbati
as well as the final fate of unstable stars undergoing colla
has not been established definitively.

Along a sequence of nonrotating, spherical stars, par
etrized by central density, the maximum mass configura
defines a critical density above which the stars are unst
to radial oscillations: stars on the high density, unsta
branch collapse to black holes on dynamical time sca
@5–7#.

Establishing the onset of instability for rotating stars
more complicated. Chandrasekhar and Friedman@8# and
Schutz@9# developed a formalism to identify points ofdy-
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namical instability to axisymmetric perturbations along s
quences of rotating stars. In their formalism, however
complicated functional for a set of trial functions has to
evaluated. Probably because of the complexity of their me
ods, explicit calculations have never been performed. Fr
man, Ipser and Sorkin@10# showed that for uniformly rotat-
ing stars the onset ofsecularinstability can be located quite
easily by applying turning-point methods along sequence
constant angular momentum. This method has been app
to find points of secular instability in numerical models
uniformly rotating neutron stars@1,2,11#.

Turning point methods along such sequences can o
identify the point of secular, and not dynamical instabilit
since one is comparing neighboring, uniformly rotating co
figurations with the same angular momentum. Maintain
uniform rotation during perturbations tacitly assumes h
viscosity. In reality, the star will preserve circulation as w
as angular momentum in a dynamical perturbation, and
uniform rotation. It is thus possible that a secularly unsta
star may be dynamically stable: for sufficiently small visco
ity, the star may change to a differentially rotating, stab
configuration instead of collapsing to a black hole. Ul
mately, the presence of viscosity will bring the star back in
rigid rotation, driving the star to an unstable state. A secu
instability evolves on a dissipative, viscous time scale, wh
a dynamical instability evolves on a collapse~free-fall! time
scale. Friedman, Ipser and Sorkin@10# showed that along a
sequence of uniformly rotating stars, a secular instability
ways occursbeforea dynamical instability~implying that all
secularly stable stars are also dynamically stable!.

For spherical stars, the onset of secular and dynam
instability coincides~since for a nonrotating star a radial pe
turbation conserves both circulation and uniform rotatio!.
©2000 The American Physical Society12-1
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This suggests that for uniformly rotating stars for which t
rotational kinetic energyT is typically a small fraction of the
gravitational energyW, the onset of dynamical instability i
close to the onset of secular instability. One goal of t
paper is to test this hypothesis and to identify the onse
dynamical instability in rotating stars.

We also follow the nonlinear growth of the radial inst
bility and determine the final fate of unstable configuratio
Nonrotating neutron stars collapse to black holes, but ro
ing stars could also form black holes surrounded by mas
disks. Also, ifJ/Mg

2 exceeds the Kerr limit of unity~whereJ
is the angular momentum andMg the total mass-energy o
gravitational mass of the progenitor star!, not all of the mat-
ter can collapse directly to a black hole. As pointed out
cently, such a system could be the central source ofg-ray
bursts@12#.

Numerical hydrodynamic simulations in full general rel
tivity ~GR! provide the best approach to understanding
collapse of rotating neutron stars. Two groups@13,14# in-
cluded rotation in axisymmetric, relativistic hydrodynam
codes to study the collapse of rotating massive stars to b
holes. The collapse and fate of unstable rotating neu
stars, however, has never been simulated before. Prob
this is because numerical methods for constructing ini
data describing rapidly rotating neutron stars, as well as
merical tools, techniques and sufficient computational
sources have only become available recently. Over the
few years, robust numerical techniques for constructing e
librium models of rotating neutron stars in full GR have be
established@1,2,11,15–17#. More recently, methods for th
numerical evolution of 3D gravitational fields have been d
veloped~see, e.g.,@18–24#!. In a previous paper@25#, Shi-
bata presented a wide variety of numerical results of
problems for his 3D hydrodynamic GR code and dem
strated that simulations for many interesting problems
now feasible.

In this paper, we perform simulations in full GR for rap
idly rotating neutron stars. This study is a by-product of o
long-term effort to build robust, fully relativistic, hydrody
namic evolution codes in 3D. We adopt rigidly rotating s
pramassive neutron stars at mass-shedding as initial data
exploring rotating stars at mass-shedding, we can clarify
effect of rotation most efficiently. Such stars are also
plausible outcome of pulsar recycling and binary coal
cence. Following Ref.@25#, we prepare equilibrium states fo
such stars using an approximation in which the spatial me
is assumed to be conformally flat. We then perform num
cal simulations to investigate the dynamical stability of t
rapidly rotating neutron stars against collapse and to de
mine the final fate of the unstable neutron stars. We beli
that this is the first 3D simulation of the dynamical collap
of a rotating neutron star in full GR.

In Newtonian physics, stars with sufficient rotatio
(T/uWu*0.27) are dynamically unstable to bar formatio
@26–28#. SinceT/uWu increases approximately withR21 as a
star collapses, radial collapse may drive the dynam
growth of nonaxisymmetric bars. To allow for this possib
ity, a numerical simulation must be performed in 3D, not
axisymmetry.
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In Sec. II, we briefly describe our formulation, initial dat
and spatial gauge conditions. In Sec. III, we present num
cal results. First, we study the dynamical stability of sup
massive rotating neutron stars at the mass-shedding li
We then study the final products of the unstable neutron s
adopting three kinds of initial conditions: In the first case, w
choose a marginally stable neutron star and slightly red
the pressure for destabilization as the initial condition. In
second case, we prepare a stable star, and then reduce a
fraction of the pressure suddenly. While we are primar
interested in computational consequences, this scenario
provide a model for sudden phase transitions inside neu
stars~see, e.g.,@29,30# and references therein!. In the third
case, we prepare a stable star and add more mass nea
surface to induce collapse. In all the cases, we find that
final products are black holes without surrounding mass
disks, which we can readily explain. In Sec. IV we provide
summary. Throughout this paper, we adopt the unitsG5c
5M (51 whereG, c andM ( denote the gravitational con
stant, speed of light and solar mass, respectively. We
Cartesian coordinatesxk5(x,y,z) as the spatial coordinat
with r 5Ax21y21z2; t denotes coordinate time.

II. METHODS

A. Summary of formulation

We perform numerical simulations using the same form
lation as in@25#, to which the reader may refer for details an
basic equations. The fundamental variables used in this p
are

r: rest mass density,

«: specific internal energy,

P: pressure,

um: four velocity,

a: lapse function,

bk: shift vector,

g i j : metric in 3D spatial hypersurface,

g5e12f5det~g i j !,

g̃ i j 5e24fg i j ,

Ki j : extrinsic curvature.

General relativistic hydrodynamic equations are solved us
the van Leer scheme for the advection terms@31#. Geometric
variables~together with three auxiliary functionsFi and the
trace of the extrinsic curvature! are evolved with a free evo
lution code. The boundary conditions for geometric variab
are the same as those adopted in@25#. Violations of the
Hamiltonian constraint and conservation of mass and ang
momentum are monitored as code checks. Several test
culations, including spherical collapse of dust, stability
2-2
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STABILITY AND COLLAPSE OF RAPIDLY ROTATING, . . . PHYSICAL REVIEW D61 044012
spherical neutron stars, and the evolution of rotating neu
stars as well as corotating binary systems have been
scribed in@25#. Black holes that form during the late pha
of the collapse are located with an apparent horizon finde
described in@32#.

We also define a densityr* (5rau0e6f) from which the
total rest mass of the system can be integrated as

M* 5E d3xr* . ~2.1!

We perform the simulations assumingp-rotation symmetry
around thez-axis as well as a reflection symmetry with r
spect to thez50 plane and using a fixed uniform grid wit
the typical size 153377377 in x2y2z. We have also per-
formed test simulations with different grid resolutions
check that the results do not change significantly.

The slicing and spatial gauge conditions we use in t
paper are basically the same as those adopted in@25#; i.e., we
impose an ‘‘approximate’’ maximal slice condition (Kk

k

.0) and an ‘‘approximate’’ minimum distortion gauge co
dition @D̃ i(] tg̃

i j ).0 where D̃ i is the covariant derivative
with respect tog̃ i j ]. However, for the case when a rotatin
star collapses to a black hole, we slightly modify the spa
gauge condition in order to improve the spatial resolut
around the black hole. The method of the modification
described in Sec. II. C.

B. Initial conditions for rotating neutron stars

As initial conditions, we adopt rapidly and rigidly rotatin
supramassive neutron stars in~approximately! equilibrium
states. The approximate equilibrium states are obtained
choosing a conformally flat spatial metric, i.e., assum
g i j 5e4fd i j . This approach is computationally convenie
and, as illustrated in@33#, provides an excellent approxima
tion to exact axisymmetric equilibrium configurations.

Throughout this paper, we assume aG-law equation of
state in the form

P5~G21!r«, ~2.2!

whereG is the adiabatic constant. For hydrostatic problem
the equation of state can be rewritten in the polytropic fo

P5KrG, G511
1

n
, ~2.3!

whereK is the polytropic constant andn the polytropic in-
dex. We adoptG52 (n51) as a reasonable qualitative a
proximation to realistic~moderately stiff! cold, nuclear equa-
tions of state.

Physical units enter the problem only through the po
tropic constantK, which can be chosen arbitrarily or els
completely scaled out of the problem. We often quote val
for K5200/p, for which in our units (G5c5M (51) the
radius isR5(pK/2)1/2510 in the Newtonian limit; corre-
sponding toR;15 km. SinceKn/2 has units of length, di-
mensionless variables can be constructed as
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M̄* 5M* K2n/2, M̄g5MgK2n/2, R̄5RK2n/2,

J̄5JK2n, P̄5PK2n/2, r̄5rKn, ~2.4!

where P denotes rotational period. All results can be sca
for arbitraryK using Eqs.~2.4!.

For the construction of the~approximate! equilibrium
states as initial data, we adopt a grid in which the semi-ma
axes of the stars, along thex andy axes, are covered with 40
grid points. For rotating stars at mass-shedding near
maximum mass, the semi-minor~rotation! axis along thez
axis is covered with 23 or 24 grid points.

In Fig. 1, we show the relation between the gravitation
massMg and the central densityrc for the neutron stars. The
solid and dotted lines denote the relations for spherical n
tron stars and stars rotating at the mass-shedding limit, c
structed from the exact stationary matter and field equatio
The open circles denote the approximate equilibrium sta
at the mass-shedding limit obtained using the conformal fl
ness approximation. We find that atrc5rmax where 0.0040
&rmax&0.0045,Mg takes its maximum value. For stars wit
stiff equations of state the numerical results in Ref.@2# show
that the central density at the onset of secular instab
~which hereafter we refer to asrcrit) is very close tormax
~see, e.g., Fig. 4 of@2#!. We therefore consider stars wit
rc>rmax(.rcrit) as candidates for dynamically unstab
stars.

C. Spatial gauge condition

When no black hole is formed, we adopt the approxim
minimum distortion~AMD ! gauge condition as our spatia
gauge condition. However, as pointed out in previous pap

FIG. 1. The gravitational massMg as a function of the centra
densityrc for rotating stars withG52 andK5200/p. The solid
and dashed lines denote exact solutions for sequences of rot
stars at the mass-shedding limit and spherical stars. The o
circles denote the sequence of rotating stars at the mass-she
limit as obtained from the conformal flatness approximation. T
configurations that we adopt as initial data for dynamical evolut
calculations in this paper are marked with~A!–~E!.
2-3
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SHIBATA, BAUMGARTE, AND SHAPIRO PHYSICAL REVIEW D61 044012
@24,25#, during the black hole formation~i.e., for an infalling
radial velocity field!, the expansion of the shift vector] ib

i

and the time derivative off becomes positive using thi
gauge condition together with maximal slicing. According
the coordinates diverge outward and the resolution aro
the black hole forming region becomes worse and worse
ing the collapse. This undesirable property motivates us
modify the AMD gauge condition when we treat black ho
formation. Specifically, we modify the AMD shift vector ac
cording to

b i5bAMD
i 2 f ~ t,r !

xi

r 1e
bAMD

r 8 . ~2.5!

HerebAMD
i denotes the shift vector in the AMD gauge co

dition, bAMD
r 8 [xkbAMD

k /(r 1e), e is a small constant much
less than the grid spacing, andf (t,r ) is a function chosen a

f ~ t,r !5 f 0~ t !
1

11~r /Mg,0!
4

, ~2.6!

whereMg,0 denotes the gravitational mass of a system at
50. We determinef 0(t) from f05f(r 50). Taking into
account the fact that the resolution aroundr 50 deteriorates
whenf0 becomes large, we choosef 0 according to

f 0~ t !5H 1 for f0>0.8,

2.5f021 for 0.4<f0<0.8 type I,

0 for f0,0.4,

~2.7!

or

f 0~ t !5H 1 for f0>0.6,

5f022 for 0.4<f0<0.6 type II,

0 for f0,0.4.
~2.8!

Note that for spherical collapse withf 051, ] ib
i;0 at r

50 in both cases. In general, we find numerically that] ib
i is

small near the origin, where the collapse proceeds ne
spherically. In the following, we refer to the modified gau
conditions off 0 defined by Eqs.~2.7! and~2.8! as type I and
II, respectively. We employ them whenever a rotating n
tron star collapses to a black hole.

III. NUMERICAL RESULTS

A. Dynamical stability

We investigate the stability of supramassive rotating n
tron stars at mass-shedding limits against gravitational
lapse. We adopt the stars marked with~A!, ~B!, ~C!, ~D!, and
~E! in Fig. 1 as initial conditions for our numerical exper
ments. The physical properties of these stars are summa
in Table I. In this numerical experiment, we adopt two init
conditions for each model. In one case, we use the~approxi-
mate! equilibrium states of rotating neutron stars without a
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perturbation and in the other case, we uniformly reduce
pressure by 1%~by decreasingK; i.e., DK/K51% where
DK denotes the depletion factor ofK @35#!.

In Fig. 2, we showr anda at r 50 @34# as a function of
t/P where P is the rotation period of each rotating star.
find that whenrc,rcrit @i.e., stars~A!, ~B! and ~C!#, the
rotating stars oscillate independent of the initial perturb
tions. Hence, these stars are stable against gravitational
lapse. We note that we find small amplitude oscillations ev
when we do not reduce the pressure initially. This is cau
by small deviations of the initial data from true equilibriu
states, both because of the conformal flatness approxima
and because of numerical truncation error.

We expect the oscillation frequencies in Fig. 2 to be t
fundamental quasi-radial oscillation of these rotating sta
The oscillation periods increase with the central density.
the marginally stable point of secular stability (rc5rcrit), the
period becomes infinite.

Star~D! does not collapse either and instead oscillates
DK50. However, it collapses forDK/K51%. This indi-

TABLE I. The list of the central densityrc , total rest mass
M* , gravitational massMg , angular momentum in units o
Mg

2 (J/Mg
2), T/W, rotation period P, and coordinate length of th

semi-major axisRe for rotating neutron stars at mass-shedding li
its in the conformal flat approximation. The gauge invariant defi
tion of T/W is the same as that in Ref.@1#. The units of mass, length
and time areM( , 1.477 km, and 4.927msec, respectively.

rc(1023) M* Mg J/Mg
2 T/W P Re Model

2.77 1.580 1.452 0.598 0.087 163 8.064~A!

3.38 1.628 1.484 0.586 0.085 148 7.820~B!

3.98 1.646 1.496 0.574 0.083 137 7.365~C!

4.68 1.645 1.494 0.563 0.080 127 6.934~D!

5.43 1.630 1.481 0.553 0.078 120 6.566~E!

FIG. 2. a andr at r 50 as a function oft/P in the evolution of
stars ~A!–~E!. The solid and dotted lines denote the results
DK50 andDK/K51%, respectively.
2-4
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STABILITY AND COLLAPSE OF RAPIDLY ROTATING, . . . PHYSICAL REVIEW D61 044012
cates that star~D! is located near the onset point of dynam
cal stability. It is found that the oscillation amplitude for th
caseDK50 is very large compared with those for~A!–~C!.
This could be caused by two effects:~i! star ~D! is near the
onset of dynamical instability and hence a small deviat
from true equilibrium can induce large perturbations;~ii ! the
conformal flatness approximation results in larger deviati
from true equilibrium for more relativistic configuration
which causes a larger initial perturbation. Apparently,
deviation caused by the numerical truncation error and/or
conformal flatness approximation stabilizes the configu
tion, and forDK50 the star oscillates with an average val
of the central density@r(r 50).0.004# slightly smaller than
the initial valuerc.0.0047. This suggests that star~D! with
DK50 is a perturbed state of a true equilibrium star ofrc
.0.004;rcrit . The results for star~E! are similar to, but
more pronounced than those for star~D!, suggesting that the
initial configuration ~E! may also be a perturbation of
stable star withrc.0.004;rcrit .

To determine the onset of dynamical instability mo
sharply, we perform further simulations adoptingDK/K
50.7%, 0.8%, and 0.9% for star~D!. In Fig. 3, we showr
anda at r 50 as a function oft/P for star~D! for the various
initial depletion factors. We find that forDK/K<0.8%, the
stars behave similarly toDK50; i.e., the stars simply oscil
late with the average density.rcrit . For DK/K>0.9%,
however, the stars quickly collapse to a black hole. We
not find any examples in which the stars oscillate with av
age densities larger than 0.0045*rcrit . This indicates that
equilibrium stars withrc*rcrit are dynamically unstable. Al
though we cannot specify the onset of dynamical instabi
with arbitrary precision, our present results indicate tha
nearly coincides with the onset of secular instability.

B. Final outcome of unstable collapse

To study the final outcome of the gravitational collapse
rapidly rotating neutron stars, we perform a number of n
merical experiments for several different initial conditions

FIG. 3. a andr at r 50 as a function oft/P during the evolution
of star ~D! for various DK/K. The solid, dashed, long dashe
dotted-dashed, and dotted lines denote the results forDK/K50,
0.7%, 0.8%, 0.9%, and 1%.
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First, we evolve star~D! with DK/K51% for different
spatial gauge conditions. In Fig. 4, we showf and a at r
50 as a function of time for the AMD gauge~solid line!, the
modified gauge of type I~dotted line! and type II ~dashed
line!. As stated in Sec. II B,f(r 50) increases quickly dur-
ing the gravitational collapse for the AMD gauge. In th
case,a(r 50) stops decreasing in the late phase of the c
lapse wheref(r 50)*1, which is a numerical artifact. This
is probably caused by the insufficient resolution around
black hole forming region. For the modified gauge con
tions, a(r 50) smoothly approaches zero. We note th
a(r 50) ought to be independent of the spatial gauge con
tion, so that the deviation of the AMD results from the mod
fied gauge condition results are a numerical artifact. T
shows that the results fort/P*1.4 computed in the AMD
gauge condition is unreliable and indicates that the mod

FIG. 5. Same as Fig. 4, but for the angular momentumJ/J0 as a
function of t/P. Here,J0 is the angular momentum of the system
t50.

FIG. 4. f anda at r 50 as a function oft/P during the collapse
of star ~D! with DK/K51% for the AMD gauge~the solid line!,
the modified gauge of type I~the dotted line! and of type II ~the
dashed line!, respectively.
2-5
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FIG. 6. Snapshots of density contours forr* and the velocity flow for (vx,vy) in the equatorial plane~left! and in they50 plane~right!
for the collapse of star~D! with DK/K51% ~evolved with type I modified AMD gauge!. The contour lines are drawn forr* /r* c

51020.3j for j 50,1,2, . . . ,10 wherer* c is 0.034, 0.64, and 2.04 for the three different times. The lengths of arrows are normalized tc
~left! and 0.1c ~right!. The thick solid lines denote the location of the apparent horizon.
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cation of the AMD gauge condition is an appropriate strate
to overcome the deterioration of the resolution in the l
phase of the collapse.

In Fig. 5, we show the time variation of the total angu
momentum of the system. Since the evolving system
nearly axisymmetric, the angular momentum should
nearly conserved. In all the three cases, however, the ang
momentum slowly decreases in the early phase, whic
caused by numerical dissipation at the stellar surface. As
collapsing star approaches a black hole, the angular mom
tum changes quickly because the resolution becomes inc
04401
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ingly worse. In the AMD gauge case, the error amounts
*5%, while in the modified gauge cases, it is;1.5% at the
time when apparent horizon is found att;1.4P~see Fig. 6!.
This is further evidence that the modified gauge conditio
are better suited for simulations of black hole formation.

It should be noted that even with the modified gauge c
ditions, the resolution becomes too poor to perform accu
simulations for times exceedingt/P*1.5. This is because th
metric g̃ i j becomes very spiky around the apparent horiz
~i.e., because of horizon throat stretching!. To perform simu-
lations for times much later than horizon formation spec
2-6
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STABILITY AND COLLAPSE OF RAPIDLY ROTATING, . . . PHYSICAL REVIEW D61 044012
computational tools are necessary, probably including ap
ent horizon boundary conditions@36#.

In Fig. 6, we show snapshots of density contour lines
the densityr* and the velocity field forv i(5ui /u0) in the
equatorial andy50 planes. The results are obtained in t
modified gauge condition of type I. It is found that aft
about 1.4 orbital periods almost all the matter has collap
to a black hole. In Fig. 7, we show the fraction of the re
mass inside a coordinate radiusr, defined as

M* ~r !

M*
5

1

M*
E

uxi u,r
d3xr* . ~3.1!

Re denotes the coordinate axial length in the equatorial pl
at t50 ~see Table I!. Note that att;1.4P, the apparent ho
rizon is located atr .0.2Re . Thus, almost all the matte
~more than 99%! has been absorbed by the black hole by t
time. Although Fig. 6 shows that a small fraction of th
matter has not yet been swallowed by the black hole,
matter which stays insider &Re;5Mg will ultimately have
to fall in. This is, because the radius of the innermost sta
circular orbit ~ISCO! is RISCO

SS ;5Mg for a ~nonrotating!
Schwarzschild black hole in our gauge. The collapse of
tating neutron stars withJ/Mg

2;0.6,1 leads to moderately
rotating Kerr black holes, for whichRISCO

SS is an adequate
approximation to the ISCO. This fact already suggests
no disk will form around the black hole.

The same reason also suggests why no massive
forms during the collapse: the equatorial radiusRe is initially
less than 5Mg , and hence inside the radius which will b
come the ISCO of the final black hole.

Next, we evolve the initial configuration~A! depleting the
pressure by various amounts, which may provide a mode
sudden phase transitions inside neutron stars@29,30#. In Fig.
8, we showr and a at r 50 as a function of time for
DK/K50,1%, 5%, and 10%@35#. When the depletion facto
is less than 5%, the star simply oscillates, but forDK/K

FIG. 7. Fraction of the rest mass inside a coordinate radiusr as
a function oft/P for star~D! with DK/K51% ~evolved with type I
modified AMD gauge!. Re denotes the initial coordinate length o
the semi-major axis.
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or

510% the star collapses dynamically. Note that deplet
the pressure by 10% is approximately equivalent to incre
ing the gravitational mass by 5% according to the scal
relation for the polytropic stars ofG52 @see Eq.~2.4!#. Since
the gravitational mass for star~A! is about 3% less than th
maximum allowed mass, it is quite reasonable that this
collapses. In the following two simulations, we focus on ev
lutions of star~A! with DK/K510%.

In order to test if nonaxisymmetric~bar-mode! perturba-
tions have enough time to grow appreciably during the gra
tational collapse, we excite such a perturbation by modify
the initial density profiler* according to@35#

r* 5~r* !0S 110.3
x22y2

Re
2 D , ~3.2!

where (r* )0 denotes the density profile of star~A! in the
unperturbed state.

In Figs. 9 and 10, we show snapshots of density cont
lines forr* and the velocity field forv i in the equatorial and
y50 planes for the above axisymmetric and nonaxisymm
ric initial conditions. For these simulations we adopted t
modified gauge condition of type II. In Fig. 11, we also sho
M* (r )/M* as a function of time for these cases. We ag
find that irrespective of the initial perturbation, almost all t
matter collapses into the black hole without any massive d
or ejecta around the black hole. Again, this is a conseque
of the stars being sufficiently compact that almost all t
matter ends up inside the ISCO of the final black hole. N
that the star with the nonaxisymmetric perturbation evolv
very similarly to the unperturbed, axisymmetric star, sho
ing that the dynamical collapse does not leave the non
symmetric perturbation enough time to grow apprecia
during the collapse. Again, this can be understood quite e
ily from the following heuristic~and Newtonian! argument.
Star ~A! has an initial equatorial radius ofRe;5.5Mg , and

FIG. 8. a and r at r 50 as a function oft/P for star~A! of
various initial pressure depletion factorsDK/K. The solid, dotted,
dashed, and dotted-dashed lines denote the cases whereDK/K
50%, 1%, 5%, and 10%, respectively.
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FIG. 9. Same as Fig. 6, but for star~A! with DK/K510%. The contour lines are drawn forr* /r* c51020.3j for j 50,1,2, . . . ,10 where
r c is 0.012, 0.20, and 1.01 for the three different times.
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can therefore shrink by less than a factor of 3 before a bl
hole forms. Its initial value ofT/uWu is about 0.09~see Table
I!. SinceT/uWu scales approximately withR21, it can just
barely reach the critical value (T/uWu)dyn;0.27 for dynami-
cal instability before a black hole forms. It is therefore n
surprising that we do not find dynamically growing axisym
metric perturbations. Note that the star does reach the cri
value for secular instability to bar formation@which may be
as small as (T/uWu)sec;0.1 for very compact configurations
see @37# #, so that viscosity or emission of gravitation
waves could drive the star unstable. However, this m
would grow on the corresponding dissipative time sca
04401
k

t

al

e
,

which is much longer than the dynamical time scale of
collapse.

In order to make these statements about nonaxisymm
growth more quantitative, we compare the quantities

2
xrms2yrms

xrms1yrms
~3.3!

for the perturbed and unperturbed evolutions in Fig.
Here,xrms

i denotes the mean square axial length defined
2-8
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FIG. 10. Same as Fig. 6, but for star~A! with DK/K510% and the nonaxisymmetric perturbation~3.2!. The contour lines are drawn fo
r /r c51020.3j for j 50,1,2, . . . ,10 wherer c is 0.012, 0.15, and 0.99 for the three different times.
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* * *
xrms
i 5F 1

M*
E d3xr* ~xi !2G1/2

. ~3.4!

The figure shows very clearly that the axial ratio oscilla
for the perturbed evolution, but does not grow on the d
namical timescale of the collapse.

Finally, we model a scenario in which a small amount
matter accretes onto a stable star resulting in destabiliza
of the star. As the stable star, we again adopt configura
~A! and to model the matter accretion we modify the init
density distribution according to@35#
04401
s
-

f
on
n

l

r* 5~r* !0S 110.5
r 2

Re
2D , ~3.5!

with all the matter moving with the same initial angular v
locity. Most of the enhancement is in the outer region, wh
mimics the effect of accretion. In this case, the total r
mass is about 9.5% larger than that of star~A!, so that the
mass is larger than the maximum allowed mass along
sequence of rotating neutron stars. The value ofJ/Mg

2 is
nearly unchanged. Note that we do not reduce the pres
2-9
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SHIBATA, BAUMGARTE, AND SHAPIRO PHYSICAL REVIEW D61 044012
for these simulations. We again evolve the star using
modified gauge condition of type II.

The star again evolves very similarly to those in the p
vious two cases. As an example, we show in Fig.
M* (r )/M* as a function of time, which is similar to th
results in Fig. 11. The apparent horizon forms att.0.89P
and r .0.2Re . We again find that almost all the matter co
lapses into the black hole without forming a massive d
around the black hole.

IV. SUMMARY AND CONCLUSION

We perform fully relativistic, 3D hydrodynamic simula
tions of supramassive neutron stars rigidly rotating at
mass-shedding limit. We study the dynamical stability
such stars close to the onset of secular instability and fol
the collapse to rotating black holes.

Our results suggest that the onset of dynamical, ra
instability is indeed close to the onset of secular instabil

FIG. 11. Same as Fig. 7, but for star~A!, DK/K510%, with
~solid line! and without~dashed line! the nonaxisymmetric pertur
bation ~3.2!.

FIG. 12. Same as Fig. 11, but for the mean square axial len
@see Eq.~3.3!#. The solid and dashed lines denote simulations w
and without the nonaxisymmetric perturbation~3.2!.
04401
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e
f
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al
,

as expected from the coincidence of the secular and dyna
cal instability in nonrotating, spherical stars.

In all our simulations, nearly all the matter is consum
by the nascent black hole by the time the calculation sto
and we do not find any evidence for a formation of a mass
disk or any ejecta. Since we are considering maximally
tating neutron stars at the mass-shedding limit, and since
formation of a disk is even less likely for more slowly rota
ing stars, we conclude that such disks quite generally do
form during the collapse of unstable, uniformly rotating ne
tron stars. This also includes stars which are destabilized
pressure depletion~as, for example, by a nuclear phase tra
sition!, or by mass accretion.

We also find that during the collapse to a black ho
nonaxisymmetric perturbations do not have enough time
grow appreciably.

Both these findings can be understood quite easily fr
heuristic arguments. The initial equilibrium configuratio
are sufficiently compact, typicallyRe&6Mg , so that most of
the matter already starts out inside the radius which w
become the ISCO of the final black hole. Therefore it is ve
unlikely that a stable, massive disk would form. Also, t
star can only contract by about a factor of three befor
black hole forms. HenceT/uWu, which approximately scales
with R21, can only increase by about a factor of three ov
its initial value of (T/uWu) init;0.09, and only barely reache
the critical value of dynamical instability for bar formatio
(T/uWu)dyn;0.27. It is therefore not surprising that we d
not see a dynamical growth of nonaxisymmetric pertur
tions. We expect that these results hold for any modera
stiff equation of state, for which the corresponding critic
configurations are similarly compact.

The study reported here focuses onuniformly rotating
neutron stars, for which we adopt a moderatelystiff equation
of state and consider a configuration which is moderat
compact initially (R/Mg;6). We speculate that for two al
ternative scenarios the results may be quite different, e
qualitatively, both as far as the formation of a disk and t

th

FIG. 13. Same as Fig. 7, but for collapse with the initial dens
profile ~3.4! @mimicking star~A! driven into instability by accretion
of additional matter#.
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growth of nonaxisymmetric perturbations are concerned.
For differentially rotating neutron stars, which are th

likely outcome of the merger of binary neutron stars@4#,
T/uWu may take larger values than for rigidly rotating ne
tron stars. It is therefore possible that such stars might
velop dynamical bar mode instabilities.

Rotating supermassive stars~with massesM*105M () or
massive stars on the verge of supernova collapse are su
to the same dynamical instabilities, but are characterized
very soft equations of state (G;4/3) and initial configura-
tions which are nearly Newtonian~see @7,38#!. Such stars
therefore reach the critical value (T/uWu)dyn for bar mode
formation far outside the horizon radius. Moreover,R/M is
very large initially, so that a disk may easily form~compare
the discussion in@38#!.
J

J

J

. J

. J

n-

n.

se

.
d

04401
e-

ect
y

We will treat the collapse of both differentially rotatin
neutron stars and supermassive stars in future papers.
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